Quiz 7: §3.8-4.2

Problem 1 (7 points, 1 point per entry). In this problem, f is a function that is continuous on the interval $[2,8]$, and whose critical numbers occur only at integers.

Using this information, fill out the blank (white) cells in the below table. Ignore the grayed out cells.

x	2	3	4	5	6	7	8
$f(x)$	-5		0	5		1	7
$f^{\prime}(x)$		DNE	3		0		
critical pt.? (yes/no)		yes	$\boxed{\text { no }}$	yes	yes	yes	
local min/max or neither		neither	neither	local max	neither	local min	

Solution: Recall that a critical point is where the derivative is either 0 or does not exist, and local maxima/minima must occur at critical points.

The rightmost two cells are tricky. I was hoping people would draw some pictures and convince themselves that f had to have a local minimum at $x=7$. Here's a precise argument: we know that f is continuous on $[5,8]$ so the Extreme Value Theorem says that f attains an absolute minimum on $[5,8]$. But $f(7)$ is smaller than both $f(5)$ and $f(8)$ so that means the absolute minimum is NOT at an endpoint. So there's a local minimum, and such a thing must occur at a critical point. Moreover, the problem stipulates that all critical numbers of f are integers. Since the table says f does not have a local minimum at $x=6$, it must be at $x=7$.

Problem 2 (4 points). Explain why there CANNOT be a function f with all of the following properties:

- f is differentiable on all of \mathbb{R},
- $f(1)=2$,
- $f(5)=22$,
- $f^{\prime}(x)<4$ for all x.

Solution: Suppose that such a function f existed. Then by the Mean Value Theorem applied to the interval $[1,5]$ (f is differentiable everywhere so also continuous everywhere) we conclude that there exists some c in $(1,5)$ for which

$$
f^{\prime}(c)=\frac{f(5)-f(1)}{5-1}=\frac{20}{4}=5 .
$$

But that contradicts the requirement that $f^{\prime}(x)<4$ for all x. Hence such a function f cannot exist.

Problem 3 ($2+2=4$ points). Alice takes a water bottle from her room (21 degrees Celsius) and puts it in her fridge (5 degrees Celsius) at 7:00 A.M. At 7:10 A.M., the temperature of the water has dropped to 17 degrees Celsius.
(a) Express the temperature of the water bottle as a function of time $t \geq 0$ (with t measured in minutes after 7:00 A.M.).
(b) At what time is the water 14 degrees Celsius?

Setup. This "setup" part in violet is stuff I honestly wasn't expecting people to do on the quiz, but seeing as to how a lot of people tried to start from here, I figured I'd start from here too.

Newton's law of cooling says that our water temperature T obeys a differential equation of the form

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

where T_{s} is the temperature of the surroundings-in this case the fridge, which is at 5 degrees. Let $y=T-T_{s}$, so that

$$
\frac{d y}{d t}=\frac{d}{d t}\left(T-T_{s}\right)=\frac{d T}{d t}=k\left(T-T_{s}\right)=k y .
$$

We know that the only solutions to this differential equation have the form $A e^{k t}$. This means that

$$
T=y+T_{s}=A e^{k t}+T_{s}
$$

for some constants A, k to be determined. The above derivation should be familiar to you from lecture, and I wasn't expecting you to reproduce them on the quiz.

Solution:

(a) Basically, I was hoping that people would recognize the temperature would be given by an equation of the form

$$
T(t)=A e^{k t}+T_{s} .
$$

Here $T_{s}=5$. We know that $T(0)=21$, i.e.

$$
T(0)=A e^{0}+5=A+5=21
$$

so $A=16$. Then plugging in $t=10$ lets us solve for the last unknown constant, which is k :

$$
\begin{aligned}
17 & =16 e^{10 k}+5 \\
\frac{3}{4} & =e^{10 k} \\
\frac{1}{10} \ln \frac{3}{4} & =k .
\end{aligned}
$$

Hence

$$
T(t)=16 e^{\frac{t}{10} \ln \frac{3}{4}}+5=16\left(\frac{3}{4}\right)^{t / 10}+5
$$

(I don't care if you wrote it as the first thing as opposed to the second.)
(b) Solve $T(t)=14$:

$$
\begin{aligned}
16\left(\frac{3}{4}\right)^{t / 10}+5 & =14 \\
\left(\frac{3}{4}\right)^{t / 10} & =\frac{9}{16} \\
\frac{t}{10} & =2
\end{aligned}
$$

so $t=20$, meaning that the water will be 14 degrees Celsius at 7:20 A.M. If you left your answer as 20 (or any expression that is equal to 20) that's fine too.

